خمینه های لورنتزی و فضاهای همگن

thesis
abstract

فضای لورنتزی همگن با بعد حداقل سه را در نظر می گیریم ثابت می کنیم که اگر این فضا گروه پایاکر بزرگ داشته باشد انحنای مقطعی ثابت دارد

similar resources

درباره برخی خمینه های همگن لورنتزی

در این پایان نامه ساختار g- خمینه های همگن لورنتزی d- بعدی m=g?h بدست آمده از گروه لی نیم ساده g توصیف می شود. بنا به نتیجه ای از کوالسکی کافیست حالتی را بگیریم که g سره عمل کند در نتیجه زیرگروه پایاگر h فشرده است. افزون برآن هر فضای همگن g?h ? با زیرگروه پایاگر کوچکتر h ??h یک متریک لورنتزی ناوردا می پذیرد. خمینه همگن g?h با زیرگروه پایاگر فشرده همبند h خمینه پذیرفتنی کمین نامیده می شود هرگاه ...

15 صفحه اول

گروه طولپایی یک خمینه لورنتزی فشرده

هدف اصلی این پایان نامه‏، بیان و اثبات قضیه ی مهمی در مورد رده بندی (با تقریب یکریختی موضعی) گروه های لی همبند است که بر یک خمینه ی لورنتزی فشرده به صورت طولپایی و موضعاً وفادار عمل می کنند. بنابر این قضیه‏، گروه لی همبند g بر‎‎‎ یک خمینه ی لورنتزی فشرده به صورت طولپایی و موضعاً وفادار عمل می کند اگر و تنها اگر ‎پوشش جهانی g یکریخت با l*k*rd ‎‎ باشد‎ که در آن‏، kفشرده و نیم ساده (یا بدیهی)‏، d?0و...

عمل های مدار ناسره بر خمینه های لورنتزی

هدف اصلی این پایان نامه، مطالعه ی مساله ی رده بندی گروه های لی حقیقی همبندی است که عملی موضعاً وفادار و مدار ناسره به صورت طولپایی های یک خمینه لورنتزی همبند می پذیرند. ثابت شده است سه گردایه از گروه ها وجود دارد به طوری که گروه لی همبندg چنین عملی می پذیرد اگر و تنها اگر gدر یکی از این سه گردایه باشد. در این پایان نامه این سه گردایه مورد بررسی قرار گرفته اند و ثابت شده است که اگر گروه لی همبند ...

دینامیک های مدار ناسره در خمینه های لورنتزی

هدف اصلی این پایان نامه‏، مطالعه ی گروه های لی است که عملی موضعا وفادار و مدار ناسره به صورت طولپایی های یک خمینه لورنتزی همبند می پذیرند. گردایه ی همه ی گروه های لی همبندی که رادیکال پوچ همبند ساده دارند و چنین عملی را می پذیرند‏، توصیف شده است. این توصیف چنان انجام شده است که با ارایه ی نمایش معقولی از یک گروه لی می توان مشخص کرد که آیا این گروه در گردایه ی مذکور واقع است یا نیست. به عبارت د...

خمینه های شبه ریمانی همگن تخت

خمینه های شبه ریمانی همگن کامل با خمیدگی ثابت ناصفر با تقریب طولپایی در سال 1961 رده بندی شده است. در همان سال یک قضیه ساختاری برای خمینه های شبه ریمانی همگن تخت کامل بیان شد. این قضیه در سال 1995 منجر به یک رده بندی می شود که دراین پایان نامه مورد مطالعه قرار گرفته است. این قضیه ، رده بندی را متناظر با یافتن جوابهای دستگاهی از معادلات درجه دوم می کند که در سال 2000 مورد بررسی قرار گرفت. البته ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023